If the system of equations $2 x-y+z=4$, $5 x+\lambda y+3 z=12$,$100 x-47 y+\mu z=212$ has infinitely many solutions, then $\mu-2 \lambda$ is equal to

  • [JEE MAIN 2025]
  • A
    $56$
  • B
    $57$
  • C
    $55$
  • D
    $59$

Similar Questions

Evaluate the determinants

$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$

Let $\lambda \in R .$ The system of linear equations

$2 x_{1}-4 x_{2}+\lambda x_{3}=1$

$x_{1}-6 x_{2}+x_{3}=2$

$\lambda x_{1}-10 x_{2}+4 x_{3}=3$  is inconsistent for 

  • [JEE MAIN 2020]

Let $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ where $0 \leq \theta \leq 2 \pi$. Then

$2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$ then the value of $ x$ is

The value of $a$ for which the system of equations

$a^3x + ( a + 1)^3y + (a + 2)^3z = 0$ ; $ax + (a + 1) y + ( a + 2) z = 0$ ; $x + y + z = 0$, has a non zero solution is